Skip to main content

Publications

Below is a list of selected publications that members of the group have contributed to. 

Our publications

2016

Akbar, M.S., Yu, H. and Cang, S., 2016. Delay, Reliability, and Throughput Based QoS Profile: A MAC Layer Performance Optimization Mechanism for Biomedical Applications in Wireless Body Area Sensor Networks. Journal of Sensors, 2016.

2015

Jin, D., Gabrys, B. and Dang, J, 2015.Combined node and link partitions method for finding overlapping communities in complex networks. Scientific Reports 5.
Bennett, M., Morse, S. and Budka, M., 2015. Tracks and sediments: evolutionary stasis in foot function? 31st IAS Meeting of Sedimentology, 22-25 June 2015, Krakow, Poland.
Litke, W. and Budka, M., 2015. Scaling beyond one rack and sizing of Hadoop platform. Scalable Computing: Practice and Experience (In press), 17 (1).
Venkata S.K., Keppens J., Musial K., 2015. Agent Based Simulation to Evaluate Adaptive Caching in Distributed Databases. EUMAS 2015: European Conference on Multi-Agent Systems, Greece.
Gao F., Musial K., Cooper C., and Tsoka S., 2015. Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics. Scientific Programming, vol. 2015, Article ID 172879.
Kajdanowicz T., Michalski R., Musial, K., Kazienko P., 2015. Learning in Unlabelled Networks – An Active Learning and Inference Approach. AI Communicattions, (in press), http://arxiv.org/abs/1510.01270.
Rostami, S., Reilly, D.O., Shenfield, A. and Bowring, N., 2015. A novel preference articulation operator for the Evolutionary Multi-Objective Optimisation of classifiers in concealed weapons detection. Information Sciences, 295 (C), 494-520.
Rostami, Shahin, Shenfield, A., Sigurnjak, S. and Fakorede, O., 2015. Evaluation of Mental Workload and Familiarity in Human Computer Interaction with Integrated Development Environments using Single-Channel EEG. In: Psychology of Programming Interest Group 2015 - 26th Annual Workshop, Bournemouth.
Shenfield, A. and Rostami, S., 2015. A Multi objective Approach to Evolving Artificial Neural Networks for Coronary Heart Disease Classification. In: Computational Intelligence in Bioinformatics and Computational Biology 12-15 August 2015 IEEE.
Bakirov, R., Gabrys, B. and Fay, D., 2015. On Sequences of Different Adaptive Mechanisms in Non-Stationary Regression Problems. In: 2015 International Joint Conference on Neural Networks 12-17 July 2015 Killarney, Ireland.
Hao, J., Bian, G., Xie, X., Hou, Z. and Yu, H., 2015. Kinematic and static analysis of a cable-driven 3-DOF delta parallel mechanism for haptic manipulators. IEEE Computer Society, 4373-4378.
Melinte, O., Vladareanu, L., Munteanu, R.A. and Yu, H., 2015. Haptic Interfaces for Compensating Dynamics of Rescue Walking Robots. Elsevier, 218-224.
Huda, M.N. and Yu, H., 2015. Trajectory tracking control of an underactuated capsubot. Autonomous Robots.
Chernbumroong, S., Cang, S. and Yu, H., 2015. Maximum relevancy maximum complementary feature selection for multi-sensor activity recognition. Expert Systems with Applications, 42 (1), 573-583
Daniela Pohl, Abdelhamid Bouchachia: Information Propagation in Social Networks During Crises: A Structural Framework. Propagation Phenomena in Real World Networks 2015: 293-309
N. Tintarev & J. Masthoff: Explaining Recommendations: Design and Evaluation Recommender Systems Handbook (Second Ed, in press). Kantor, Ricci, Rokach, Shapira (Eds). Springer
N. Tintarev, J. B. Kang, T. Höllerer and J. O'Donovan Inspection Mechanisms for Community-based Content Discovery in Microblogs. Joint Workshop on Interfaces and Human Decision Making for Recommender Systems in conjunction with Recsys.
N. Tintarev, M. Green, J. Masthoff, and F. Hermens. Benefits and risks of emphasis adaptation in study workflows. Workshop on Personalization Approaches in Learning Environments in conjunction with UMAP.
K. Smith, J. Masthoff, N. Tintarev and W. Moncur. The Development and Evaluation of an Emotional Support Algorithm for Carers. Special Issue on Artificial Intelligence for Human Computer Interaction of Intelligenza Artificiale, Berardina Nadja De Carolis and Cristina Gena (eds.), IOS Press
K. Smith, J. Masthoff, W. Moncur, and N. Tintarev. Supporting Carers through Intelligent Virtual Agents. SICSA PhD Student conference. Best poster award (2nd year)

2014

Pop, N., Vladareanu, L., Popescu, I.N., Ghiţə, C., Gal, A., Cang, S., Yu, H., Bratu, V. and Deng, M., 2014. A numerical dynamic behaviour model for 3D contact problems with friction. Computational Materials Science, 94 (C), 285-291.
Vladareanu, V., Schiopu, P., Deng, M. and Yu, H., 2014. Intelligent extended control of the walking robot motion. IEEE Computer Society, 489-495.
Musial K., Brodka P.: Kazienko P., Gaworecki J., 2014. Extraction of Multilayered Social Networks from Activity Data. The Scientific World Journal, vol. 2014, Article ID 359868.
Zliobaite, I. and Gabrys, B., 2014. Adaptive preprocessing for streaming data. IEEE Transactions on Knowledge and Data Engineering, 26 (2), 309-321.
Balaguer-Ballester, E., Tabas-Diaz, A. and Budka, M., 2014. Empirical Identification of Non-stationary Dynamics in Time Series of Recordings. In: Bouchachia, A., ed. Adaptive and Intelligent Systems (8779). Springer International Publishing, pp. 142-151. DOI: 10.1007/978-3-319-11298-5_15.
Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Martin Salvador, M., Schwan, S., Tsakonas, A. and Žliobaitė, I., 2014. From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors. In: Blockeel, H., van Leeuwen, M. and Vinciotti, V., eds. Advances in Intelligent Data Analysis XIII (8819). Springer International Publishing, pp. 49-60. DOI: 10.1007/978-3-319-12571-8_5.
Budka, M., 2014. Data stream synchronization for defining meaningful fMRI classification problems. Applied Soft Computing, 24 (0), pp. 212-221. DOI: 10.1016/j.asoc.2014.07.011.
Krol, D., Budka, M. and Musial, K., 2014. Simulating the information diffusion process in complex networks using push and pull strategies. ENIC 2014: European Network Intelligence Conference.
Zliobaite, I., Budka, M. and Stahl, F., 2014. Towards cost-sensitive adaptation: When is it worth updating your predictive model? Neurocomputing, (In press)
Balaguer-Ballester, E., Tabas-Diaz, A. and Budka, M., 2014. Can we identify non-stationary dynamics of trial-to-trial variability? PLOS One, 9 (4), pp. e95648.
Fay, D., Moore, A.W., Gurman, J., Filosi, M. and Brown, K., 2014. Graph metrics as summary statistics for Approximate Bayesian Computation with application to network model parameter estimation. Journal of Complex Networks.
N. Tintarev, R. Kutlak, J. Masthoff, K. van Deemter, N. Oren and W. Vasconcelos. Adaptive Visualization of Plans. UMAP'14 demo track.
K. Arts, Y. Melero, G. Webster, N. Sharma, N. Tintarev, C. Mellish, Y. Sripada, X. Lambin, A.-M. MacMaster, H. Sutherland, C. Horrill, R. van der Wal. Impacts of digital innovation on volunteer data submission in ecological citizen science. Digital Conservation. University of Aberdeen, Scotland, UK (Program. Abstract on page 6 of PDF)
F. Cerutti, N. Tintarev, and N. Oren. Formal Argumentation: A Human-centric Perspective. ArgMAS in conjunction with AAMAS. (position paper)
F. Cerutti, N. Tintarev, and N. Oren. Formal Arguments, Preferences, and Natural Language Interfaces to Humans: an Empirical Evaluation. ECAI'14 (acceptance rate fp: 28%).
N. Tintarev and R. Kutlak. SAsSy Explanations - Making Plans Scrutable with Argumentation and Natural Language Generation. IUI demo track.
N. Tintarev and R. Kutlak. SAsSy - Making Decisions Transparent with Argumentation and Natural Language Generation Workshop on interacting with Smart Objects in association with IUI.
N. Tintarev, E. Reiter, A. Waller and R. Black. Natural Language Generation for Augmentative and Alternative Communication. In Natural Language Generation For Interactive Systems, A. Stent and S. Bangalore (eds.), Cambridge University Press.

2013

Fay, D., Norkus, M., Kilmartin, L., Murphy, M.J., Ólaighin, G. and Barry, F., 2013. The Effect of Temperature Elevation on Cryopreserved Mesenchymal Stem Cells. Cryoletters, 34 (4), 349-359.
Musial K., Kazienko P., 2013. Social Networks on the Internet. World Wide Web Journal, 16(1), 31-72.
Lemke, C., Budka, M. and Gabrys, B., 2013. Metalearning: a survey of trends and technologies. Artificial Intelligence Review, DOI: 10.1007/s10462-013-9406-y.
Budka, M., Juszczyszyn, K., Musial, K. and Musial, A., 2013. Molecular Model of Dynamic Social Network Based on E-mail communication. Social Network Analysis and Mining, DOI: 10.1007/s13278-013-0101-4.
Budka, M. and Gabrys, B., 2013. Density Preserving Sampling: Robust and Efficient Alternative to Cross-validation for Error Estimation. IEEE Transactions on Neural Networks and Learning Systems, 24(1), pp. 22-34.
Musial K., Budka M., Juszczyszyn K., 2013. Creation and Growth of Online Social Network: How do social networks evolve?, World Wide Web, 16(4), DOI: 10.1007/s11280-012-0177-1.
Phelps S., and Musial K., 2013. Network motifs for microeconomic analysis. 18th Annual Workshop on the Economic Science with Heterogeneous Interacting Agents (WEHIA2013), Iceland.
Xu, L., de Vrieze, P. T., Phalp, K. T., Jeary, S. and Liang, P., 2013. Interoperative end user process modelling for process collaborative manufacturing. International Journal of Computer Integrated Manufacturing, 26(11) pp. 990-1002.
Fay, D., 2013. Centrality and mode detection in dynamic contact graphs; a joint diagonalisation approach. In: no, ed. Advances in Social Network Analysis and Mining 25-28 August 2013 Niagara Falls, Canada.
N. Tintarev, M. Dennis and J. Masthoff. Adapting Recommendation Diversity to Openness to Experience: A Study of Human Behaviour. UMAP'2013
N. Tintarev, N. Oren, R. Kutlak, M. Green, J. Masthoff, K. van Deemter and W. Vasconcelos. SAsSy - Scrutable Autonomous Systems. Do-Form: Enabling Domain Experts to use Formalised Reasoning a symposium at AISB 2013 (draft)
S. Cleger-Tamayo, J. M. Fernandez-Luna, J. Huete-Guadix, N. Tintarev. Being confident about the quality of the predictions in Recommender Systems. ECIR2013.

2012

Rostami, S. and Shenfield, A., 2012. CMA-PAES: Pareto archived evolution strategy using covariance matrix adaptation for multi-objective optimisation. 12th UK Workshop on Computational Intelligence, UKCI 2012.
Zliobaite I., Bifet A., Gaber M., Gabrys B., Gama J., Minku L., Musial K., 2012: Next challenges for adaptive learning systems, ACM SIGKDD Newsletter, 14(1), ISSN 1931-0145, http://dl.acm.org/citation.cfm?doid=2408736.2408746.
Abderrahim Bourouis, Mohammed Feham, Abdelhamid Bouchachia: A New Architecture of a Ubiquitous Health Monitoring System: A Prototype Of Cloud Mobile Health Monitoring System. CoRR abs/1205.6910 (2012)
N. Tintarev & J. Masthoff. Evaluating the effectiveness of explanations for recommender systems: Methodological issues and empirical studies on the impact of personalization. User Modeling and User-Adapted Interaction
​N. Tintarev & J. Masthoff. Explanations in Recommender Systems. Recommender Systems Handbook. Kantor, Ricci, Rokach, Shapira (Eds). Springer
C. Mellish and N. Tintarev. Natural Language Generation for the Digital Economy Digital Economy All Hands Conference - Digital Futures 2012
N. Tintarev, Y. Melero, S. Sripada, E. Tait, R. Van Der Wal and C. Mellish. MinkApp: Generating Spatio-temporal Summaries for Nature Conservation Volunteers. (INLG'2012)
R. Black, A. Waller, E. Reiter and N. Tintarev Automatic Utterance Generation for Personal Narrative - System Development and Feasibility Experiences (based on the ISAAC submission) Communication Matters National Conference (CM)
R. Black, A. Waller, E. Reiter and N. Tintarev Automatic Utterance Generation for Personal Narrative - System Development and Feasibility Experiences ISAAC Research Symposium.
R. Black, A. Waller, E. Reiter and N. Tintarev How was School today...? Using a mobile phone to support data collection for automatic narrative generation Communication Matters National Conference (CM) (Abstract)
R. Black, A. Waller, N. Tintarev, E. Reiter and J. Reddington A Mobile Phone Based Personal Narrative System SIGACCESS Conference on Computers and Accessibility (ASSETS) (acceptance rate fp: 30%)
R. Black, A. Waller, E. Reiter, N. Tintarev and J. Reddington. How was School today...? A Prototype System that uses a Mobile Phone to Support Personal Narrative for Children with Complex Communication Workshop on Speech and Language Processing for Assistive Technologies in association with EMNLP Edinburgh, Scotland.
R. Black, J. Reddington, E. Reiter, N. Tintarev and A. Waller. "Hands Busy, Eyes Busy": Generating Stories from Sensor Data for Automotive applications.

2011

2010

N. Tintarev. PhD thesis: Explaining recommendations, 2010.

R. Black, J. Reddington, E. Reiter, N. Tintarev and A. Waller. Using NLG and Sensors to Support Personal Narrative. Digital Economy All Hands Meeting - Digital Futures (poster)

N. Tintarev, A. Flores, and X. Amatriain. Off the beaten track - a mobile field study exploring the long tail of tourist recommendations. MobileHCI'10

2009

A. Bollin, A. Bouchachia (Eds.): Proceedings of the Computer Science and Mobility Workshop (CSMWt’09), Klagenfurt, April 2009.

N Tintarev and J Masthoff. Evaluating Recommender Explanations: Problems Experienced and Lessons Learned for Evaluation of Adaptive Systems. In the workshop on User-Centred Design and Evaluation of Adaptive Systems in association with UMAP'09, Trento.

X. Amatriain, J.M. Pujol, N. Tintarev, N. Oliver "Rate it Again: Increasing Recommendation Accuracy by User re-Rating", in the 2009 ACM RecSys Conference.

2008

N Tintarev and J Masthoff. Over- and underestimation in different product domains. In Workshop on Recommender Systems associated with the European Conference on Artificial Intelligence'08, Patras.

N Tintarev and J Masthoff. The Effectiveness of Personalized Movie Explanations: An Experiment Using Commercial Meta-data. In Adaptive Hypermedia '08, Hannover. (Awarded James Chen Best Student Paper)

2007

N Tintarev and J Masthoff: Effective Explanations of Recommendations: User-Centered Design. In ACM Recommender Systems '07, Minneapolis.

N Tintarev: Explanations of Recommendations. In Doctoral Consortium ACM Recommender Systems '07, Minneapolis.

N Tintarev: Explaining Recommendations. In Doctoral Consortium, User Modeling'07, Corfu.

N Tintarev and J Masthoff: A Survey of Explanations in Recommender Systems. In G Uchyigit (ed), Workshop on Recommender Systems and Intelligent User Interfaces associated with ICDE'07, Istanbul

2006

N Tintarev & J Masthoff. Similarity for News Recommender Systems. In G Uchyigit (ed), Workshop on Recommender Systems and Intelligent User Interfaces associated with AH'06, Dublin