
Requirements engineering methods for an
Internet of Things application: fall-detection for

ambient assisted living

Sofia Meacham1, Keith Phalp1

1Faculty of Science and Technology, Bournemouth University,
Fern Barrow, Poole, Dorset, BH12 5BB, UK

smeacham@bournemouth.ac.uk, kphalp@bournemouth.ac.uk,

Abstract

In this paper, hybrid requirements modelling approach is proposed
for the Internet of Things (IoT) application of fall-detection for
ambient assisted living.

In describing our approach an example case study that covers
development phases from the requirements identification and
modelling to the design and implementation of such systems is
provided. The combination of different formalisms in order to
achieve our goal, notably Volere templates for requirements
documentation, Use Case diagrams and SysML diagrams for
specification, SysML Block Definition Diagrams for system design
and implementation was investigated. The suitability and
advantages/disadvantages of each modelling approach as well as
their combination were analysed and presented. Last but not least,
future research with more applications and further design aspects are
presented.

Keywords: requirements, SysML, IoT, fall-detection

1.0 Introduction
In this paper, a systematic approach for the most important parts of projects that
deal with the design and development of Internet of Things systems is proposed.
The case study used was a fall-detection system for ambient assisted living, which
can be categorized as part of the general Internet of Things applications.

mailto:smeacham@bournemouth.ac.uk
mailto:kphalp@bournemouth.ac.uk

According to the World Health Organization [1] approximately 28-35% of people
aged 65 and over fall each year increasing to 32-42% for those over 70 years of
age. The situation is getting worse due to the fact that elderly people often have to
stay alone for long periods of time either in their own home environments or in
care homes. In this context, automatic fall-detection systems can enable triggering
of an alert (manual or automatic) in an emergency situation, thus enabling help
when it is required, reducing deaths from falls and consequently increasing the
personal feeling of security of elderly people. There are several available fall-
detection systems, each of which address some of the requirements, both for indoor
[2] [3] and outdoor environments [4]. However, the requirements for these systems
are rarely properly defined and formulated.

In this paper, an attempt to properly define the requirements for these types of
systems through the use of a variety of different formalisms will be initiated.

First, Volere templates have been chosen for the initial steps. Among all the steps
of the Volere requirements engineering process, the use of Volere templates is
more well-known and widely-adopted. The structured view of the requirements
document allows for a systematic and methodical way of defining the requirements
using a document format.

Moving from a document format to a diagrammatic modelling representation, Use
Cases have been used for software requirements for many years. There are several
advocates that support them as well as literature that criticizes them, and indeed,
the authors have been part of a drive to improve their utility. However, despite
such arguments, standard use cases remain the most commonly used modelling
technique for requirements engineering over the years, arguably due to their
simplicity and understand-ability [5]. On the other hand, SysML has emerged as a
new standard for system design and is replacing the traditional UML based
approach. It is an extension of UML that moves the designer from the software
focus of UML towards a more systems focussed approach and is expected to have
widespread use among system engineers.

In this paper, a hybrid requirements modelling approach that utilises and combines
the advantages offered by each formalism (Volere templates, Use Cases, SysML
Requirements diagrams) is proposed in order to increase efficiency and quality of
the design and implementation results.

The proposed approach consists of the following steps: The first step is to start
from Volere templates to present the requirements in an organised English
document; the second step consists of creating Use Cases; the third step
representing the structure of the requirements using SysML Requirements
diagrams; the fourth step designing the system block diagrams in SysML Block
Definition Diagrams; and the fifth step is the system implementation.

To illustrate the approach, in Section 2, a case study will be described. In Section
3, a short description of the model-based design approach and the UML/SysML
modelling languages for model-based will be initiated. In the following Section, 4,
the use of Volere templates is presented and the High-level/ Low-level Use Case
and Requirements diagrams are presented and compared. The system design and
implementation will be presented in Section 5, whereas the resulting requirements
“flow” from modelling to design/implementation will be extracted in Section 6. In
Section 7, reflections and evaluation of our approach will be presented. Finally,
Section 8 offers some conclusions and suggestions for future research directions.

2.0 Case Study Overview
This case study was set in collaboration between Bournemouth University and the
Technological Educational Institute of Western Greece (TWG), the Embedded
System Design and Application Laboratory (ESDA lab) of the Computer
Engineering and Informatics Department. Specifically, the TWG/ESDA Lab has
many years expertise in IoT applications and assisted living systems. The example
of their Ambient Assisted Living laboratory (AAL) in Patras provided significant
input to this work.

Specifically, in this case study, the requirements gathering and analysis, system
design and implementation for an indoor/outdoor fall-detection ambient assisted
living system for a UK care home are being considered.

The system will automatically detect various elements of fall-detection such as the
elderly person moving out of the care home or the garden area, detection of no
movement for an extended period of time (8 hours) or a sudden acceleration such
as a fall.

General medical information needs to be kept using electronic means so that
patients, their relatives and medical professionals (doctors, nurses, and carers) can
access/update and consistently maintain the data. Security and privacy issues
should be maintained for medical data and each user of the system should have
different privileges in using the stored information. The data should be handled
according to, in our case, the relevant UK data protection act and ethics rules and
considerations for medical information.

The medical professionals (nurses, carers) should have access to the system for
observing the level and recharging the batteries of the fall detection system.

Also, the elderly person should be able to have a choice of communicating directly
with corresponding carers, nurses, relatives in addition to the automatic alarms.
In the case of a false automatic alarm, the elderly person should be able to
designate that the alarm was false through an appropriately designed interface.

Last but not least, a major requirement for the future would be to add to the sys-
tem “intelligent” behaviour wherever appropriate. For example, in case a fall is
detected, monitoring mechanisms should be increased in order to obtain more in-
formation about the criticality of the incident and the patient’s medical condition.

3.0 Model-based Design: UML/SysML modelling
Throughout this project, Model-Based Systems Engineering (MBSE) was applied
as an approach to the design and development of a number of systems. In MBSE,
models take a central role, not only for analysis of these systems but also for their
construction. According to INCOSE, the adoption of MBSE has several ad-
vantages [6] such as: improved communication among stakeholders, team
members through diagrammatic model representations; improved quality through
early identification of problems and fewer errors at the integration stage; increased
productivity through reusability of existing models and reduced risk through
improved estimates and on-going requirements validation and verification. Overall,
it has been said to increase productivity and efficiency in the design and
development mainly of complex systems.

Specifically in this project, a combination of SysML and UML modelling
languages for MBSE within an Eclipse/Papyrus environment was used [7]. SysML
was adopted due mainly to its suitability for modelling a wide variety of systems
[8]. It was the result of a UML RFP recommendation for system engineers and has
been adopted by OMG since 2006. It offers system engineers several noteworthy
improvements over UML. SysML reduces the software-centric restrictions of UML
and adds more diagram types such as block definition diagrams, internal block
diagrams, parametric and requirements diagrams. Owing to the above additions,
SysML is able to model a wide range of systems such as hardware, software,
information, processes [9]. On the other hand, UML diagrams were still used
wherever it was more appropriate for the project.

4.0 Proposed hybrid requirements modelling approach
4.1 Volere templates
For requirements gathering and analysis, defining our requirements was initiated
by using Volere templates [10]. Volere templates are part of a widespread
requirements engineering process. In our project, they were used in order to
provide a systematic way to formulate the requirements documents.

4.2 High-level Diagrams
As a second step, modelling and diagrammatic techniques were used, among which
was SysML/UML Use Cases and SysML Requirements diagrams. The choice of
combining SysML Requirements Diagrams with the traditional Use Case
modelling was deliberate and offered a variety of views to the system
requirements. Use Cases provide the actor-based description of the system [11]

whereas Requirements Diagrams gave a diagrammatic view that connected
requirements with block diagram implementations, offering a path to
traceability/verification as well as providing relationships between requirements.

4.2.1 High-level Use Case
In Fig. 1, we can see a high-level Use Case Diagram that consists of three main
categories of Use Cases: Monitor Device which is used to monitor movement,
location and battery levels; Manage Alert which creates an alert in case something
is wrong; Manage Record which coordinates the storage and maintenance of
medical information

Automatic Fall Detection System

Monitor Device

Manage Alert

Manage Record

Resident

Relative

Personnel

NurseCarerDoctor

«actor»
Authentication

Service

«actor»
Database

«include»

«include»

Fig. 1 High-level Use Case Diagram

In this Use Case, the system is presented from the point of view of the main actions
that the actors perform (resident, relative and personnel).

4.2.2 High-level Requirements Diagram
In Fig. 2, a high-level Requirements Diagram is depicted that consists of three
main categories of requirements: Monitor Environment which is used to monitor
movement, location and battery levels; Alert Environment which creates an alert
for five cases (manual alert, fall detection, no movement detection, out of range,
low battery); Operating Environment which can be indoor, outdoor and 24/7
operating system.

Text=”...”
Id=”SS1”

«requirement»
Fall-detection
Specification

Text=”System must record
resident location in real-time,
battery level of devices and
movement of residents”
Id=”ME1”

«requirement»
Monitor Environment

Text=”Device must alert Base
Station when abnormal
movement is detected,
boundaries have been crossed
or battery level is low”
Id=”AE1”

«requirement»
Alert Environment

Text=”System must be
capable of detecting abnormal
movement 24/7, both inside
and outside of the care home”
Id=”O1"

«requirement»
Operating Environment

Text=”...”
Id=”CS1”

«requirement»
Case Study

Requirements
Specification «trace»

Fig. 2 High-level SysML Requirements Diagram

4.2.3 Comparison of High-level Diagrams
In the above Use Case, the system is presented from the point of view of the main
actions that the actors perform (resident, relative and personnel) such as monitor,
alert and manage record. On the other hand, in the above Requirements Diagram,
the system is depicted from the point of view of the main structural blocks that are
required by the system implementation such as monitoring, alert and operating
environment.

There is a one-to-one correspondence between the monitor and alert parts of both
diagrams. The difference starts when in the Use Case the managing of records is
stated explicitly as it is an important action that happens by the actors, whereas in
the Requirements Diagram there is a general block which is called operating
environment and includes/hides within it the management of records. Last but not
least, it is very hard to define which of the two diagrams lies at a higher level of
abstraction as both describe the high-level system requirements from a different
point of view.

4.3 Low-level Diagrams
4.3.1 Low-level Use Case
In Fig. 3, a low-level Use Case Diagram for Abnormal Condition Detection is
presented; specifically Monitor Device. When an abnormal condition occurs, the
system detects it using the device attached to the resident. To determine the kind of
abnormal condition, the system continuously and transparently evaluates the real-
time movement and location of residents. The system runs an algorithm to detect
the kind of abnormal condition such as fall, no movement and the location of
resident.The system also detects if the condition is a device service alert, for
example low battery. The alert is then managed by the Use Case “Manage Alert”.

Abnormal Condition Detection

Monitor Device

Resident

Monitor Real-
Time Movement

Monitor Real-
Time Location

Detect
Abnormal
Condition

Detect Device
Service Alert

Detect Fall

Detect No
Movement

Detect Location

Manage Alert

Personnel

«include»
«include»

«extend»

«include»

«include» «include» «include» «include»

Condition: {Abnormal
reading detected}
extension point: Fault

Fig. 3 Low-level Use Case Diagram

4.3.2 Low-level Requirements Diagram
In Fig. 4, a low-level Requirements Diagram is presented that describes the
abnormal condition detection requirement. It consists of three main parts:
movement, location and communication. The movement and the location are part
of the device decision. Note that in this diagram the corresponding non-functional
legal requirements are depicted that are part of the system has to follow such as
Medical Device Regulation 2012 and Care Quality Commission 2009.

Fig. 4 Low-level SysML Requirements Diagram

4.2.3 Comparison of Low-level Diagrams
In the above Use Case, the system is presented from the point of view of the
operations that will have to be performed. Unlike most of the Use Cases, it does
not focus on the interactions with actors but rather on the main operations, such as
types of abnormal condition (fall, no movement, device service alert). On the other
hand, in the above Requirements Diagram, the system is depicted from the point of
view of the main structural blocks that are required by the system implementation
such as defining movement, location and communication.

There is a one-to-one correspondence between some parts of the two diagrams
such as the movement and location blocks. However, the two diagrams are
fundamentally different in content. It is very important to note that the
requirements diagram includes non-functional requirements such as legal
requirements, which are not part of a Use Case diagram. This is an advantage that
has been introduced by SysML and is very important for non-functional properties
such as legal and security issues. On the other hand, in this case study the Use Case
diagram contains all the types of abnormal behaviour as each one of them
constitutes a separate operation (use case). This is not explicitly depicted by the
SysML Requirements diagram as it is focusing on the structure of the
requirements.

5.0 System Design/implementation
In Fig. 5, the corresponding high-level SysML block diagram of the system is
presented. A one-to-one correspondence between the requirements in Fig. 2 and
the blocks in this diagram is apparent. In addition to this, the “flow” of events is
depicted. The Monitor block monitors the system (Operating Environment block)
and when something abnormal is detected it raises a Trigger to the Alert block. The
Alert block (depending on the specific Trigger that was raised), decides on the
required adaptation and sends an Adapt signal to the Operating Environment to
perform the changes.

«block»

Operating Environment
«block»

Alert Environment

«block»
Monitor Environment

parts
:Manual Alert
:Fall
:OutofRange
:LowBattery

parts
:Indoor Operation
:Outdoor Operation
:24/7 Operation

parts
:Movement
:Location
:Battery

MonitorTrigger

Adapt

Fig. 5. High-level SysML Block Definition Diagram (BDD)

6.0 Requirements “flow” from modelling to
design/implementation
From the above, we contend that the SysML Requirements diagrams most closely
match the system design/implementation as they follow the same structural
decomposition approach. The correspondence between requirements blocks and
blocks of the SysML Block Definition Diagram is very close, whereas the
corresponding Use Cases view the system in a more “operations” and actor usage
manner.

To recap, the proposed design flow consists from the following steps: The first step
is to start from Volere templates to present the requirements in an organised
English document; the second step consists of creating Use Cases for the actor,
external-use view of the system; the third step consists of representing the structure
of the requirements and the non-functional requirements using SysML
Requirements diagrams; the fourth step consists of designing the system block
diagrams in SysML Block Definition Diagrams; the fifth step is the system
implementation.

7.0 Reflections and evaluation of the proposed
approach
In this paper, a hybrid approach for requirements modelling was proposed using
three different formalisms.

The Volere templates served the purpose of structuring and organising the English
document descriptions and are quite a common choice for this purpose.

However, our particular combination of Use Cases and SysML Requirements
diagrams represents a novel and effective approach. In [12], Use Case diagrams are
defined as a way to “describe the interaction between a system and the
environment” whereby Requirements diagrams are described by [13] as “a
relationship view of requirements, which address dependencies and allocation of
requirements in other software artefacts.”

Upon analysis of the requirements for our specific fall-detection case study, a wide
range of functional and non-functional requirements such as legal, performance
and security issues were identified.

Use Case diagrams were particularly effective at providing a comprehensive
summary of functions carried out across the system by elderly patients, carers and
doctors. They were also successful at highlighting how the system will behave and
adapt in both normal and exceptional cases especially when displaying less
common ‘out of range’ and non-movement usage’ scenarios.

Whilst the Use Case diagrams presented a clear, simplistic high-level
understanding of functions being performed they have many limitations.
Limitations include a lack of technical detail and an inability to show non-
functional requirements such as how quickly the alarm would be signalled after the
push of the button. This is supported by [14] where Use Cases are specified as ‘not
being well suited for capturing requirements such as physical, availability and
other non-functional requirements’.

In contrast the ‘complete’ nature of Requirements diagrams meant that showing
non-functional requirements such as response times was exceptionally easy. In
addition to this requirements diagrams are exceptionally ‘traceable’ thus making it
easy to highlight a hierarchy between technical requirements. For example, when
using Requirements diagrams it was possible to illustrate such relationships with
the Containment model however these relationships were not possible to depict
with Use cases.

In [15], the point that “Requirements should be written at different levels of detail
because several stakeholders use them for different purposes” is presented. This

highlights why strengths and weaknesses exist for each modelling technique and is
indicative of how they would both be used in combination in the real world.

For instance, Use Case Diagrams are better at depicting functional requirements
and user interactions with the system. This is because these diagrams would
normally be used during the early stages of the requirements phase to show an
understanding between the business analyst and the end users of the system. As the
main stakeholder is typically the end user, the level of technical detail is usually
kept to a minimum to avoid unnecessary confusion.

In contrast, requirements diagrams are typically created and shared by the business
analyst to more technical minded stakeholders such as technical architects and
developers. This therefore requires the diagrams to be far more structured and
contain more low level detailed technical information.

8.0 Conclusions and future work
This paper has presented a proposed approach to requirements modelling and
subsequent design and implementation of Internet of Things (IoT) systems,
illustrated by reference to an assisted living case study. Our proposed modelling
approach uses a combination of existing tools for modelling requirements, utilising
the particular strengths of each, and also providing potential users with notation
with which they are likely to be familiar and confident. This solution is of
particular importance for the changing and diverse nature of stakeholders, actors
and systems involved in an IoT application. Specifically, IoT applications require
careful consideration of non-functional requirements that the SysML formalism
can provide as well as communication with a diverse number of stakeholders that
Use Case diagrams and Volere templates could provide.

Our future plans for research are to apply this approach to more IoT applications as
well as to the design and implementation of complex diverse systems such as
Systems of Systems (SoS). In addition, requirements traceability and verification
that will combine our modelling techniques with formal methods will be
investigated. Last but not least, our proposed approach is at its early stages towards
developing metrics and methods for ensuring the quality of the design/development
for the diverse, ever-changing and adaptive IoT applications of the future.

9.0 References
1. World Health Organization. Ageing and Life Course Unit, 2008. WHO global

report on falls prevention in older age. World Health Organization
2. Mercuri, M., Garripoli, C., Karsmakers, P., Soh, P.J., Vandenbosch, G.A., Pace,

C., Leroux, P. and Schreurs, D., 2016. Healthcare System for Non-invasive Fall
Detection in Indoor Environment. In Applications in Electronics Pervading
Industry, Environment and Society (pp. 145-152). Springer International
Publishing.

3. Dong, Q., Yang, Y., Hongjun, W. and Jian-Hua, X., 2015, July. Fall alarm and
inactivity detection system design and implementation on Raspberry Pi. In
Advanced Communication Technology (ICACT), 2015 17th International
Conference on (pp. 382-386). IEEE.

4. Busching, F., Post, H., Gietzelt, M. and Wolf, L., 2013, October. Fall detection
on the road. In e-Health Networking, Applications & Services (Healthcom),
2013 IEEE 15th International Conference on (pp. 439-443). IEEE.

5. Arlow, J. and Neustadt, I., 2005. UML 2 and the unified process: practical
object-oriented analysis and design. Pearson Education.

6. INCOSE, 2007, Systems Engineering Vision 2020, v.2.03. Available at:
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf.
[Accessed 09 February 2016].

7. Papyrus. 2016. Papyrus. [ONLINE] Available at: https://eclipse.org/papyrus/.
[Accessed 09 February 2016].

8. Bouabana-Tebibel, T., Rubin, S.H. and Bennama, M., 2012, August. Formal
modeling with SysML. In Information Reuse and Integration (IRI), 2012 IEEE
13th International Conference on (pp. 340-347). IEEE.

9. Apvrille, L. and Roudier, Y., 2015. Designing Safe and Secure Embedded and
Cyber-Physical Systems with SysML-Sec. In Model-Driven Engineering and
Software Development (pp. 293-308). Springer International Publishing.

10. Robertson, S., Robertson, J., 2013. Mastering the requirements process:
Getting requirements right. 3rd ed. Upper Saddle River, NJ: Addison-Wesley.

11. Kulak, D. and Guiney, E., 2012. Use cases: requirements in context. Addison-
Wesley.

12.Bertolino, A., Fantechi, A., Gnesi, S., Lami, G. and Maccari, A., 2002,
September. Use case description of requirements for product lines. In
Proceedings of the international workshop on requirements engineering for
product lines (pp. 12-19).

13.Ozkaya, I., 2006, September. Representing requirement relationships. In
Requirements Engineering Visualization, 2006. REV'06. First International
Workshop on (pp. 3-3). IEEE.

14.Friedenthal, S., Moore, A. and Steiner, R., 2014. A practical guide to SysML:
the systems modeling language. Morgan Kaufmann.

15.Soares, M.D.S. and Vrancken, J., 2007, October. Requirements specification
and modeling through SysML. In Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on (pp. 1735-1740). IEEE.

http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf

	Requirements engineering methods for an Internet of Things application: fall-detection for ambient assisted living
	Abstract
	1.0 Introduction
	2.0 Case Study Overview
	3.0 Model-based Design: UML/SysML modelling
	4.0 Proposed hybrid requirements modelling approach
	4.1 Volere templates
	4.2 High-level Diagrams
	4.2.1 High-level Use Case
	4.2.2 High-level Requirements Diagram
	4.2.3 Comparison of High-level Diagrams

	4.3 Low-level Diagrams
	4.3.1 Low-level Use Case
	4.3.2 Low-level Requirements Diagram
	4.2.3 Comparison of Low-level Diagrams

	5.0 System Design/implementation
	6.0 Requirements “flow” from modelling to design/implementation
	7.0 Reflections and evaluation of the proposed approach
	8.0 Conclusions and future work
	9.0 References

